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Gauge theory of dislocations and disclinations for planar 
elastic systems 
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Joint Institute for Nuclear Research, Laboratory of Theoretical Physics, 141980 Dubna, 
Moscow Region, Russia 

Received 12 March 1992, in final form 16 July 1992 

Abstract. M&ng use of the gauge approach we constmct the continuum model for the 
description of topological defects in planar elastic systems. The equations of motion for 
defect system in the presence of both dislocation and disclination fields are presented. 
The exact vortex-like solution for static disclinations is obtained. The Schmdinger equation 
in the presence of a static disclination vortex is studied. We show that electrons (holes) 
canacquireatopologicalphasewhichdepends on thedisclination flux. Whentheinteraction 
between long-wave electron fields and acoustic waves is present, the electrons with E < E p  
are found to be localized. The scattered states (at E > EF) acquire an additional phase 
shiR due to the deformation potential. 

1. Introduction 

At the present time gauge constructions play an essential role in the description of 
different phenomena in condensed matter physics (see, e.g. [l]). One of the modem 
trends is the gauge theory of dislocations and disclinations constructed first in a closed 
form by Edelen and KadiC [Z]. This theory enables us to describe the continuum elastic 
media with continuously distributed topological defects in a self-consistent way. 
According to [2], the space group G, that includes both the translations and rotations, 
in three space dimensions (G3 = S0(3)DT(3) for d = 3) can be considered as a gauge 
group. The dislocation fields are associated with the inhomogeneous action of the 
group T(3) whereas the disclination fields are associated with the inhomogeneous 
action of the group SO(3). One of the basic concepts of the Edelen-Kadit (EK) gauge 
theory is the concept of the Yang-Mills minimal coupling theory. 

The aim of the present paper is to construct the gauge model for planar elastic 
systems with dislocations and disclinations continuously distributed in materials on 
the basis of a direct analogy with the (3+ 1)-dimensional EK model. The gauge group 
takes the following form in two space dimensions: G2=S0(2)DT(2). It should be 
noted that the group SO(2) is Abelian instead of the non-Abelian group SO(3) for 
d = 3. Two-dimensional problems play an important role in condensed matter physics. 
Planar systems with topological defects are of interest in liquid crystals, polymers, 
layered crystals, etc. In recent years, the defect-mediated melting in two dimensions 
has been intensively studied (see, e.g. [3]). The lattice gauge model describing this 
phenomenon was proposed first in [4] and studied in detail in [5,6]. Besides, the 
(2+ 1)-dimensional systems of relativistic field theory and condensed matter physics 
are intensively studied due to topologically non-trivial effects which can exist in two 
space dimensions (see, e.g. [7]). 
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As was proposed in our previous paper [8], there may exist an attractive possibility 
for the solid state realization of the Aharonov-Bohm (AB) effect [9] in planar elastic 
systems with disclinations. Namely, we have shown that electrons (or holes) in planar 
elastic systems can acquire a topological phase if the disclination vortices are present. 
The reason is that the topology of space changes in the presence of dislocations and/or 
disclinations. As has been shown first in [IO, 111, the topologically singular character 
of dislocated crystals causes a new type of scattering process of electrons (phase- 
dismatching effect). Moreover, it has been shown recently [ 121 that the effects of Berry's 
geometrical phase [ 131 can be observed in high-energy electron diffraction in a deformed 
crystal lattice with a screw dislocation. 

The plan of the paper is as follows. In section 2 the field equations for defect 
dynamics in two space dimensions are constructed. In section 3 we study rotational 
defects and an exact solution for static disclination vortices is found. The electronic 
properties of planar elastic systems with defects are studied in section 4. For this 
purpose we use the general approach developed in [ 141 where the electronic fields 
were introduced in a gauge invariant form. We analyse the Schrodinger equation in 
an external field due to a static disclination vortex. We show that the wavefunction of 
an electron interacting with a disclination flux acquires a ph&e change like that in the 
AB effect. Note that in many respects there is a close analogy of this phenomenon with 
the gravitational AB effect intensively studied at present (see, e.g. [IS-171). The role 
of the interaction between long-wave electronic fields and acoustic waves is studied 
in section 5 .  

2. The gauge model 

We will start with the continuum Lagrangian of the elasticity theory that is invariant 
under the inhomogeneous action of the gauge group G 2 .  Note that it has the same 
form as in (3+ 1) dimensions and can be written in the isotropic case as (see, for detail, 
[21):  

L= Lx+ L,+ Lw (1) 

( 2 )  

L, = - ( ~ , / 2 ) 8 ~ D L b k ~ ~ k ~ ~ D < , j  (3) 

where 
Lx = ( p o / 2 ) B S G " B 1 - [ A ( E A B S A B ) ' + 2 ~ L E A B s  AC 8 BD E c D ] / 8  

describes the elastic properties of the material, 

describes the dislocations, and 

(4) 

E A B  = Bas;&- SA8 ( 5 )  

(IC bd Lw=-(s2/2)Fa,g g Fd 
describes the disclinations. The strain tensor in (2) is determined to be 

where 

86 = J.x'+ E ~ X ' W ~  + +L (6) 

is the distortion tensor. In (6 )  J,x' describes the integrable part of the distortion, the 
second term arises from the inhomogeneous action of the rotation group S0(2), and 
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the third arises from the breaking of homogeneity of the action of the translation group 
T(2).  The state vectorx'(X') =,yi(XA, T )  in (6) characterizes the configuration at time 
T in terms of the coordinate cover (X") of a reference configuration, W. are the 
compensating gauge fields associated with disclination fields, whereas $; are associated 
with dislocation fields. We have used here the same notation as in [ 2 ]  adapted to d = 2. 
The summation over repeated indices is assumed. 

Tensors Dbb and Fob are determined as follows: 

D ; b = J ~ + ~ - J b + ~ + & ; ( w ~ + ~ -  wb+{+F,bxj) (7) 
and 

Fub = a.Wb -abW,. (8) 
In (2)-(4) A and p are the Lam6 constants, po is the mass density in the reference 
configuration, s, and s, are the coupling constants, E; are the generating matrices of 
the group SO(2): is a completely antisymmetric tensor, E : =  1. In (4) the quantities 
gUb are given by gAB = -SA", g13 = 115 and gab = 0 for a # 6, whereas in (3) kAB = -SA", 
k33= l /y and kab = 0 for a # b. The parameters 5 and y are two positive 'propagation 
parameters' [ 2 ] .  

Let us write the Euler-Lagrange equations of defect dynamics. The variation of 
(1) with respect to x' gives 

J3pi - J A ~  = E!( - WAD: + ( 9 )  
where the explicit expression for the stress tensor 

U: = fs;s,(a,xj + E $  wCxk + ~ & ) ( A ~ ~ ~ S " E ~ ,  + ~ ~ s ~ ~ s ~ ~ E ~ ~ )  ( io)  
and the momentum 

Pi=Posii(J,x'+&ILW3~~+4:). 

In (9),  R f b  is determined as follows: 

R:b=JL/JDdb = -s,Syk"'kbd[J,$i - a d + ! +  E { (  WO+:- Wd$:)+ E ~ F ~ ~ X ' ] .  ( 1 2 )  
Note that ( 9 )  are the equations of balance of the linear momentum. When W. are 
equal to zero (pure dislocated material), (9 )  are reduced to the form J A u f = a 3 p j  well 
known in classical elasticity theory. 

The Euler-Lagrange equations in 4; are 

J.R,?b - E; WaRpb = Zp/2 

where R4b is determined above, 2: = JL/aBb, and 

z : = p j .  (14) zf = -ut 

J , ( G a b + & ; R ~ x j ) =  T b / 2  (15) 

A 

The variation with respect to W. gives 

where Gab=JL/JF.b and T'=(JL/JW,)Ifnb. 
Additionally to the Euler-Lagrange equations, we write here an important relation- 

ship between dislocations, disclinations, and stresses 

T" = E ; ( Z I I X ' + ~ R : ~ + ~ ~ )  (16) 
and the integrability conditions 

E!aABL=O 
I '  
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which determine the balance of the moment of momentum. As was shown in [2], two 
types of the boundary conditions may be written for field equations: (Q)  the Dirichlet 
data (traction-free spatial boundaries), and ( b )  the homogeneous Neumann data (zero 
initial and final momentum). Let us note also that the theory [2] has been constructed 
so that non-exact gauge conditions must be satisfied. Namely, 

x"4: = 0 XQU2 =o. 
Finally, we have constructed in this section the field theory for defects in planar 

elastic systems. It is clear that field equations given above are a system of coupled 
nonlinear differential equations which is very difficult to solve in the general case. 
However, in three space dimensions we have found an exact monopole-like solution 
for static disclinations [18]. Since a vortex is in many ways a planar analogue of the 
monopole, we hope to find an exact vortex solution in a planar case. 

3. Rotational defects (static case) 

Rotational defects are known to play an important role in defect materials (see, e.g. 
[19]). Let us consider the disclination Lagrangian L= L,+Lw where the dislocation 
fields 4; are to be ignored from the beginning. In this case, the Euler-Lagrange 
equation (13) should be eliminated whereas (9) and (15) can be rewritten as follows: 

(19) a o ~ a b = l g i ~ b  a j i x  j 

and 

a,zg = C ~ Z ;  w.. (20)  

Note that this self-consistent system of equations is similar to that obtained within 
the (2f 1)-dimensional scalar electrodynamics (the Abelian-Higgs model). In our case, 
however, we have the high-derivative terms (strongly nonlinear) instead of nonlinear 
(43) terms for the scalar field. A possible way to study field equations (19) and (20) 
is the linearization procedure developed in [Z]. For our purposes, however, we need 
non-perturbative solutions which are important in a study of topologically interesting 
effects. 

Let us choose the static vortex-like ansatz for (19) and (20). Namely, in cylindrical 
coordinates (r,  0 )  we set 

x'(xA) = F ( r )  cos ve ,y2(x") = F(r )  sin ve 

and 

W,(XB) = 0 w , ( X B ) =  w(r) w3=o 
where r2 = X A X A .  Note that the substitution of (21) and (22) into (19) and (20) results 
in very tedious equations for F ( r )  and W ( r ) ;  we omit them here. However, after the 
choice W ( r )  = u/r  these equations become essentially simpler. It is clear that with this 
choice W ( r )  turns out to be a pure gauge but it is a topologically non-trivial solution. 
In this case, the disclination current is found to be normal to the plane. The strength 
of this current is determined via the Frank vector w which has a form w = (O,O, U )  

where rot U-'= uS2(r). Note that in many aspects disclination vortices have a close 
analogy with the well known magnetic Abrikosov-Nielsen-Olesen vortices [ZO, 211. 
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One can find that both sides of (19)  turn out to be zero for our choice of W ( r )  
whereas (20 )  may be reduced to the form 

d 1 
- [ A g ’ ( r ) - B g ( r ) ] =  d r  - - [ A g 3 ( r ) -  r Bg(r ) l .  (23)  

After integration this equation is found to be 

r )  - Bg ( 4  I = go/ r (24) 

where g ( r ) = d F ( r ) / d r ,  A=A/Z+w, B = A + p  and go is an integration constant. It 
should be stressed that this equation is almost the same as in the three-dimensional 
case for the disclination monopole [ 181. The dimensional scaling, however, takes place. 
Namely, the characteristic behaviour of all physical values for planar vortices becomes 
like l / r  instead of l / r 2  in three space dimensions for the disclination monopole. For 
example, components of the stress tensor U, are found to be U; = go cos ve cos e / r  
and U,’ = go cos ve sin e / r .  The solution of (24) is obtained in the following form: 

(25) 

where No= 2 ( 8 / 3 A ) “ * ,  and the universal dimensionless parameter t = r / ro  is intro- 
duced. By analogy with [ 181 the region of the core of disclination vortex is clearly 
established, ro = (27giA/4B3)”2  defines the core radius. The analysis of (25)  shows 
that the function F ( r )  tends to a constant, F, when r’co, whereas the disclination 
fields W, tend clearly to zero as l / r .  Thus, the solutions (19)  and (20) satisfy the 
Dirichlet data for xi and the homogeneous Neumann data for WO. It should be noted 
that equation (24) contains three real roots in the region f 3 1. One can easily check, 
however, that two other solutions of (24) tend to a non-zero constant when t+m. In 
this case, F ( t )  tends to infinity at t + 00. It is clear that these solutions must be omitted. 
It is interesting to note that the value of F is calculated directly from (24),  i.e. only 
via the model parameters. In the Higgs models this parameter, which characterizes the 
spontaneous symmetry breaking in a system, was introduced as an additional parameter 
of the model. The characteristic behaviour of g ( r )  and F(r )  is shown in figure 1 .  

g , (  1 )  = Nocosh[f cosh-’( I f f ) ]  
~ ~ ( ~ ) = - N ~ C O S [ $ C O S C ~ ( I / ~ ) + $ ~ ]  t a l  

t < l  
g o )  = [ 

-1.0 
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 

t 

Figure 1. The functions F.(t)= F( t ) /N0ro  (solid 
line) and g . ( t ) = g ( t ) / N ,  (dashed line) are pre- 
sented. The point f = I ( r  = io) corresponds to the 
disclination wre radius. 
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4. Electronic properties 

To investigate electronic properties of materials with continuously distributed disloca- 
tions and disclinations, we have proposed in [14] a self-consistent approach. Within 
this approach the electronic fields are introduced in a gauge invariant form. For this 
purpose, we have used the effective mass and deformation potential theories and 
constructed the continuum Lagrangian that is invariant under the inhomogeneous 
action of group G,. It was shown that primary free electrons turn out to interact with 
disclination fields. The interaction of electrons with dislocations appears only via the 
deformation potential. In three space dimensions, we have found that this theory gives 
the known results for screw dislocations [22 ] .  Let us consider here the two-dimensional 
problem in detail. 

In the framework of the effective mass approximation the effective Lagrangian for 
the one-particle electron wavefunction +(r) takes the following form: 

(26 )  L - 1 .  

where Da+(r)=(J,,-iWa)+(r) is the covariant divergence and m* is an effective 
electron mass. Here we have used the complex representation for +(I) (recall that 
SO(2) = U( 1)). The stationary Schrodinger equation in the effective mass approximation 
can be written as 

(27) 
Obviously, this equation should be added to a system of field equations for defects 
presented in section 2. It should be noted, however, that the self-consistent analysis 
of these equations is a very difficult problem. We will study (27) by considering 
disclination fields as external fields. Let us consider the disclination vortex (22). In 
this case we get the well known equation describing a charged point particle interacting 
with a point vortex [23] 

-(h2/2m*)(V-ivV8)2+E(r) = E+€(r) .  (28) 
Here we have used the fact that (20) can also be written as W(r) = (o/Z.ir)Ve. As has 
been shown [23], the solution of (28) has to be taken in the form +E(r)=e“o+!(r, 0). 
In this case (28) is reduced to the free equation with the wavefunction obeying a 
non-trivial boundary condition, &(r, 27r) = e-i2r”+!(r, 0). Thus, a topological phase 
(a kind of Berry’s phase) arises which depends on the disclination 0ux. As has been 
shown in [SI, it results in the additional scattering of electrons thus changing the 
transport characteristics of discliiated materials. In particular, the relaxation time was 
found to be proportional to sin-’ TV in the presence of disclination vortices. Note that 
such an oscillating behaviour is peculiar to the AB effect. 

It is known (see, e.g. [24]) that there are no restrictions on the value of v apart 
from vZ -1 for topological reasons. In real elastic systems, however, disclinations 
with small values of the Frank index v ( v  = o/Z.ir) are energetically preferable. It is 
of interest that in crystals the values of v must conform to the point symmetry group 
of the underlying lattice. Namely, if we have the axis of m-fold symmetry, then the 
available values of v are equal to v =  k / m  where k is integer and fixes some restriction 
from above [24]. Thus, we conclude that the available values of v in crystals are in 
fact ‘quantized’: v =& $, f ,  . . . . For integer values of v the disclination vortex will 
have no in0uence on the topologically-induced resistivity. It is important to note that 
the results obtained in this section are formally equivalent to those for the electromag- 
netic AB effect. In fact, we have considered here only the topological part of the 

ly -d1h[++(r)Dd(r) - (4++(r ) l+( r ) l -  (hz/m*)[D~+’(r)DA+(r)l} 

- ( h’/2m*)(aA - i U’&E (r) = E+€ (r). 
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interaction. In the next section we will study the interaction of electrons with the 
lattice. As we shall see, this interaction is very important and can essentially affect the 
topological effect. 

5. Deformation potential 

In most of the real systems the interaction between electrons and acoustic waves should 
be taken into account. This problem can be studied in the framework of the deformation 
potential theory. In the isotropic case, the deformation potential is defined to be 
W d ( X c )  = -( G/2) Sp EAB(Xc)  where G is the interaction constant. Thus, the interac- 
tion Lagrangian takes the form 

Lint= -$+W W&)$(r). (29) 

The interaction constant G can be estimated analogously to the three-dimensional case 
(see, e.g. [25 ] ) .  Namely, the Fermi energy is determined in two space dimensions as 
E F = 2 r h 2 p / g m * ,  where p ( p  = N / S )  is the (surface) density of conducting electrons 
and g denotes the degeneracy of electron levels. The change of the Fermi energy due 
to a deformation can be written in the form &EF= -(AS/S)EF. On the other hand, 
the change of S can be expressed via the strain tensor: ASIS=; Sp EAB.  Supposing 
that the electron dispersion E(k,  EAB) = E ( k )  - ( G / 2 )  Sp EaB keeps the same form up 
to the Fermi energy, one can estimate that G = EF. Taking into account the interaction 
term we rewrite the Schrodinger equation (28)  in the form 

ui(r)=k2u:(r). 
1 d d ( j - v ) ’  m*G r-+--- 
r dr dr r2 h2 

Here wehaveusedtheansatz ~ ~ ( r ) = ~ , u ~ ( r ) e ” ~ / ~ , j = O , * l ,  * 2 , . . . ;  andk2= 
2m*E/h2 .  For the vortex solution (19) and (20) we End that Sp EAB = g 2 ( r ) - 2  where 
g ( r )  is determined by (25). It is beyond the scope of our paper to study (30) in detail. 
We are interested here only in qualitative results. Let us rewrite the potential of (30) 
in the form (cf [14 ] )  

( 3 1 )  
EF-K,  C O S ~ ~ [ ! C O S ~ - ’ ( ~ / ~ ) ] + K ~ / ~ ~  is 1 
EF- K ,  cos’[$ cos-’(l/t)+$r]+ K2/f* t a l  

U = [  

where K ,  = DEF and K 2 =  &( j )  = ( j -  v)’h2/2m*r; are positive dimensional para- 
meters, D = 2 B / 3 A = 4 ( h + p ) / 3 ( h + 2 p ) ;  clearly, $ < O s $ .  The characteristic 
behaviour of (31)  is as follows: for t + O  the third term in (31) tends to infinity as t-* 
whereas the second term diverges as -t-2’3. For f +  1 -  one obtains U +  EF+ K 2 - K 1  ; 
for t + l + ,  U + E F + K 2 - K 1 / 4 .  For t + o ~  both terms in ( 3 1 )  tend to zero as I-’. As a 
result, we have two possibilities for large t. Namely, for t e t o  U ( t )  may tend to EF 
both from above and from below. To analyse (31),  it is convenient to use the substitution 
cosh 34 = I / f  for t <  1 and cos 3$ = - l / f  for f 3 1, respectively (see [26 ] ) .  In this case 
we get 

0 ~ 4 6 ~ 0  
(32) 

E F - K ,  cosh2 4+K2cosh23+ 
E F -  K1 COS’ $ + KZ COS’ 3$ ?r/3 $ < r / 2 .  
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Let us study the core region, f s 1. It is useful to introduce the parameter a = K,/6K2 = 
2~pDr;/3g(j-v)’. A simple analysis shows that in the core region the curve U(() 
will cross the axis E = EF when (Y 3 6 .  For a >$we have found that U( t )  has a minimum 
at the point determined by the condition cosh’ s,.=~+[(1+2a)/16]”2. The depth 
of the potential well is found to be 

I Uol = KJ6a - 1 +(1 + Z ( ~ ) ~ / ~ ] / l Z r u .  (33) 

When a increases, the depth of the potential well rapidly increases as well and can 
reach the region E < O  at a 3  rum where ~ ~ ~ ~ - 3 . 2  for D = 1. 

1. The analysis shows that for 3 S a  S ;  the curve U ( t )  
crosses the axis E = EF. At (Y < 2 the point U( 1+) lies above this axis whereas at (Y >; 
it lies below and tends to EF for t+oo from below. The characteristic behaviour of 
the potential is shown in figure 2. One can see that for E < EF electron states are 
localized (basically in the core region). The scattered states ( E >  EF) will acquire the 
additional (to the topological) phaseshift due to the deformation potential. In the 
general case, the value of this shift can be determined by a careful analysis of (30). 
In particular, when pricc 1, the deformation potential is found to be small. In this 
case, the perturbation theory can be used, and an additional phaseshift is calculated 
to be small as well. Thus, even at the high energy ( E >  EF)  an electron can ‘see’ the 
lattice via the additional phaseshift. When the electron density is increased 
the additional phaseshift becomes considerable and can, in principle, compensate the 
topological phase. It will reflect in the resistivity properties of the material. The 
experimental verification of this prediction would be very interesting. 

Consider now the region f 

t l  I I 
Finure 2. n e  effective ootential (31) is shown. 

0.00 +--+ 
. .  1, , , , , , , , , , , , , , , , , , , I 

t 

<e parameter sn is ked: D = I ,  j = o ,  v =  
-0.50 0.25, m*=O.SMeV, r o = ~ , a , = 3 . 8 A ,  p =  

0.00 1 .oo ‘.O0 3.3x101‘cm-’, g=2, so thdt K,=EF=0.8eV 
and K2 = 0.0168 eV. 

In conclusion, in the framework of the EK gauge theory of topological defects 
rewritten for planar elastic systems we have established that rotational defects can 
affect the electronic properties of elastic materials. Namely, the wavefunction of a 
conducting electron is found to acquire the topological phase in the presence of the 
disclination vortex, which results in disclination-induced resistivity of materials with 
a specific oscillating behaviour. In our opinion, the experimental study of this effect 
in layered materials would be very important. 
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